
Volume 0 (1981), Number 0 pp. 1–12 COMPUTER GRAPHICS forum

Dependency Free Parallel Progressive Meshes

E. Derzapf and M. Guthe

Graphics and Multimedia Group, FB12, Philipps-Universität Marburg, Germany
{derzapf, guthe}@mathematik.uni-marburg.de

Abstract

The constantly increasing complexity of polygonal models in interactive applications poses two major problems.
First, the number of primitives that can be rendered at real-time frame rates is currently limited to a few million.
Second, less than 45 million triangles – with vertices and normal – can be stored per gigabyte. While the rendering
time can be reduced using level-of-detail (LOD) algorithms, representing a model at different complexity levels,
these often even increase memory consumption. Out-of-core algorithms solve this problem by transferring the data
currently required for rendering from external devices. Compression techniques are commonly used because of the
limited bandwidth. The main problem of compression and decompression algorithms is the only coarse grained
random access. A similar problem occurs in view-dependent LOD techniques. Due to the inter-dependency of split
operations, the adaption rate is reduced leading to visible popping artifacts during fast movements. In this paper,
we propose a novel algorithm for real-time view-dependent rendering of gigabyte-sized models. It is based on
a neighborhood dependency free progressive mesh data structure. Using a per operation compression method,
it is suitable for parallel random-access decompression and out-of-core memory management without storing
decompressed data.

Keywords: Level of Detail Algorithms, Real-Time Rendering, Data Compression

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.3.1 [Computer Graphics]: Hardware architecture—Parallel processing

1. Introduction

The desire for high quality polygonal models in interactive
applications is constantly increasing. Despite the enormous
processing power of graphics processors (GPUs), highly de-
tailed models cannot be rendered in real-time. Often they
even do not fit into graphics memory since only models with
up to 44.7 million triangles using (32 bit floats) can be stored
within a gigabyte. The standard solution to reduce rendering
time are static or dynamic levels-of-detail (LODs). While
static LODs are simply a set of polygon meshes, dynamic
LODs store a coarse base mesh and a sequence of refine-
ment operations. Dynamic LODs have the advantages that
view-dependent adaption is possible and transitions between
LODs, so-called popping artifacts, are much less visible. The
most common data structure used in this context are progres-
sive meshes. Sequential algorithms can however not process
enough data to fully feed the GPU and the problem of all

previous parallel approach are the local vertex dependen-
cies. While this is unproblematic for serial algorithms, the
dependencies drastically reduce the number of parallel op-
erations. Thus they do not only increase the number of tri-
angles but also reduce the adaption speed. A high adaption
speed is on the other hand the only way to prevent popping
artifacts since even prefetching algorithms cannot compen-
sate slow adaption for more than a few frames.

Out-of-core techniques were developed as LOD tech-
niques normally increase the total memory consumption. For
static LODs, the model is typically partitioned using a spa-
tial hierarchy. Then a single LOD is generated for each node.
This results in a hierarchical LOD (HLOD) structure where
only the currently required nodes need to be kept in memory.
The approach can also be extended using dynamic LODs for
each node for fully view-dependent adaption. In any case,
special care must be taken at the boundaries between nodes

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

E. Derzapf & M. Guthe / Dependency Free Parallel Progressive Meshes

to prevent visible holes in the model. Out-of-core techniques
only shift the problem of limited fast memory to limited
bandwidth of slower external devices. Compression tech-
niques are widely used to reduce the bandwidth. Unfortu-
nately, efficient compression approaches provide only coarse
grained random access. For HLODs, the problem can be cir-
cumvented using node-wise compression. The contents of
each node are compressed separately and decompressed dur-
ing loading. The compression however cannot be used to re-
duce the graphics memory consumption.

We solve these problems with our fully random accessible
dependence-free progressive mesh data structure. It is not
necessary to decompress the operations before storing them
in graphics memory. By using an optional bounding volume
hierarchy, it is suitable for in-core and out-of-core rendering.
Our main contributions are:

• A view-dependent in-core and out-of-core full random ac-
cess compressed progressive mesh data structure.
• No inter-dependencies between adjacent vertices to pre-

vent waiting for dependent operations.
• A massively parallel adaption algorithm with stable, real-

time frame rates.
• A bounding volume hierarchy for out-of-core rendering

and occlusion culling.

2. Related Work

View-dependent simplification has been an active field of re-
search over the last two decades. Hoppe [Hop96] introduced
progressive meshes (PMs) that smoothly interpolate between
different levels-of-detail. A sequence of split- or collapse
operations can be performed for each vertex to generate a
view-dependent simplification [XV96, Hop97]. Hoppe later
optimized the data structures and improved the performance
of the refinement algorithm [Hop98]. Pajarola et al. [PR00]
introduced compressed progressive meshes, that allow for a
very compact coding, but view-dependent adaption was im-
possible. Pajarola and DeCoro [Paj01, PD04] developed an
optimized sequential view-dependent refinement algorithm.
Their FastMesh is based on the half-edge data structure and
manages split-dependencies by storing a collapse-operation
for each half-edge. Diaz-Gutierrez et al. [DGGP05] pro-
posed a hierarchyless simplification algorithm that can also
be used for stripification and compression. While they com-
pletely remove any inter-dependency of split operations, an
efficient view-dependent adaption is not possible since that
requires a split-hierarchy. Hu et al. [HSH09] proposed a par-
allel adaption algorithm for progressive meshes. They in-
troduced a relatively compact explicit dependency structure
that allows to group vertex splits and half-edge collapses
into parallel steps. The drawbacks of this technique are the
explicit dependencies that need additional memory and that
only half-edge collapses are supported. A more compact pro-
gressive meshes data structure for parallel adaption was pro-
posed by Derzapf et al. [DMG10a, DMG10b]. The problem

of both approaches are however the local vertex dependen-
cies that reduce the adaption performance.

The first HLOD approach was proposed by Erikson et
al. [EMB01]. The problem of this technique is that no sim-
plification along cuts between hierarchy nodes is possi-
ble without introducing visible gaps. Guthe et al. [GBK03]
solved this problem by first using an unconstrained simpli-
fication of the nodes. The gaps are then filled during ren-
dering using line strips. Cignoni et al. [CGG∗04] proposed
a different solution by creating alternating diamond shaped
hierarchies. This way the triangles along a node bound-
ary can be simplified at coarser levels. Finally, Borgeat et
al. [BGB∗05] proposed to use geomorphing to simplify the
triangles along node boundaries during rendering. Unfortu-
nately, the transform performance is approximately halved
this way such that the previous two approaches are faster.
Another approach are the FarVoxels [GM05], which replace
pixel sized triangles by a point and use an octree for point
clustering. Sander et al. [SM06] proposed an algorithm that
performs geomorphing on the GPU to render a given mesh.
This approach extends the idea of Borgeat et al. and applies
geomorping on all triangles. The clustered hierarchy of pro-
gressive meshes (CHPM) approach [YSGM04] was the first
to combine HLOD and progressive meshes. A progressive
mesh is stored for each node to allow for smoother LOD
transitions. Nevertheless, fully view-dependent adaption is
still not possible due to the use of view-independent adap-
tion inside each node.

Mesh compression approaches have good compression
rates [TR99, AAR05], but random access is not possible.
The first approach allowing random access was introduced
by Choe et al. [CKL∗04]. Kim et al. [KCL06] provide a
more effective approach for random access compression,
based on their multi-resolution data structure [KL01]. Yoon
et al. [YL07] use streaming mesh compression to improve
the compression rate over previous approaches. The data
are divided into blocks and each block is compressed sep-
arately. The approach of Choe et al. [CKLL09] is sim-
ilar to [CKL∗04] but contains some improvements. The
performance of this approach was slightly improved by
Du et al. [DJCM09] using a k-d tree. The approach of
Courbet et al. [CH09] has a slightly better performance
but uses a single-rate compression scheme. The CHuMI
Viewer [JGA09] introduces a primary hierarchical struc-
ture (nSP-tree) in which a kd-tree is embedded to improve
the performance. Although all previous compression ap-
proaches have good compression rate, only coarse grained
random access is supported and interactive rendering is not
possible without severe popping artifacts.

3. Overview

The proposed compressed progressive mesh data struc-
ture is based on Hoppe’s original progressive mesh algo-
rithm [Hop96]. The progressive mesh is generated by sim-

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

E. Derzapf & M. Guthe / Dependency Free Parallel Progressive Meshes

plifying the original mesh with a sequence of collapse oper-
ations until no faces are left. The original mesh can then be
reconstructed by applying the corresponding split operations
in reverse order. Figure 1 shows an edge collapse operation
colv which removes the vertex vu and modifies vt to v. The
adjacent faces fl and fr of vt and vu degenerate and are re-
moved from the mesh. The corresponding vertex split splv
inverts this operation. Accordingly the faces fl and fr are
generated when the vertex v is split into vt and vu. In addi-
tion, some of the faces adjacent to v become adjacent to the
new vertex vu, the others remain connected to vt .

v
l

v
r

v
u

v
t

col
v

spl
v

v
l

v
r

v

f
n0

f
n6

f
n3

f
r

f
l

f
n1

f
n5f

n2

f
n4

f
n0

f
n6

f
n3

f
n1

f
n5f

n2

f
n4

v
n1

v
n1

v
n2

v
n2

v
n3

v
n4

v
n3

v
n4

v
n5

v
n5

Figure 1: Edge collapse and vertex split operation.

After building a progressive mesh, a view-dependent re-
construction can be generated by performing only those split
operations necessary for the current view. Performing a lo-
cal adaption requires a random access data structure that al-
lows to locally perform the operations. While the operations
are already local by definition, the method of encoding the
connectivity strongly influences the degree of locality. The
main idea of our data structure is to store the connectivity
changes in the triangles instead of storing it within the oper-
ation. This way, the connectivity of each face can be updated
without considering its current neighborhood.

3.1. Neighborhood Dependencies

Originally, Hoppe [Hop96] explicitly encoded the vertex in-
dices of vl and vr, and the indices of the faces adjacent
to vu. Xia et al. [XV96] optimized the data structures by
encoding the vertex and face indices relative to the neigh-
borhood of the split operation. The memory consumption
can be drastically reduced this way since vl and vr can
be encoded in a few bits. This encoding was previously
used by Derzapf et al. [DMG10a, DMG10b] for parallel
view-dependent refinement. While view-dependent adaption
is possible, the local dependencies require that vl , vr, and
vn1− vn5 exist when performing a split operation of v (see
Figure 1). Hoppe [Hop97] proposed a slightly different ap-
proach that does not require vl and vr to be present, but nev-
ertheless forces splitting of their ancestors afterwards to pre-
vent foldovers. These of course cannot be encoded as com-
pactly as in the previous approach. The faces adjacent to vu
are then found by traversing the edges in clockwise order
from vl to vr. Hu et al. [HSH09] later used a modification
of this technique for parallel refinement. In both cases, the
simplification constructs a forest of binary trees (Figure 2).

The neighborhood dependencies (dotted lines) are either en-
coded explicitly, or implicitly by using a special numbering
of the vertices.

Active vertices

Performed spl

Performed col

. . .

. . .

v
l v

r

v
n1

v
n2

v
n3

v
n4

v
n5

v

v
t

v
u

Figure 2: Vertex hierarchy represented as a forest of binary
trees with full (green) and reduced (red) neighborhood de-
pendencies.

The drawback of these approaches is that when vertex v
needs to be split, it often needs to wait for neighboring splits.
Figure 3 shows such a case. The vertices v1 and v3 need to
split before v4. In addition, v2 also needs to split if all neigh-
boring vertices are required. As splitting v3 requires v2u and
v2 requires v1u, the splits can only be performed sequentially.
While this is unproblematic in a sequential refinement algo-
rithm, a parallel algorithm needs four adaption passes. By
removing all neighborhood dependencies, our method can
split all four vertices in parallel.

v1

v4

v2 v3

v1t

v4 = v1r

v2 v3

v1u v1t

v4

v2u v3

v1u = v2r

v2t

v1t

v4

v2u = v3l
v3t

v1u
v2t

v3u

v1t = v4l

v4u
v2u v3u

v1u
v2t

v3t = v4r

v4t our approach

previous
approaches

Figure 3: Dependent split operations. Each arrow denotes a
parallel adaption step.

3.2. Split Operations

While previous approaches require at least vl and vr to ex-
ist, we remove this constraint and only require v to exist.
This allows to perform splits of all currently active vertices
completely in parallel. In the example above (Figure 3), all
four vertices can be split within a single adaption pass. We
achieve this by encoding all possible topology modifications
within the vertex indices of the faces. The faces are then
stored along with the split where they are generated. To sup-
port non-manifold meshes, we first store the number of gen-
erated faces and then the faces themselves. The faces are en-
coded by storing their vertex indices FVID0..2 for the finest
resolution. The current indices can then be found by search-
ing those vertices into which the final vertices are collapsed.
Thus the vertices need to be numbered such that we can effi-
ciently find the currently active vertex into which the vertex

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

E. Derzapf & M. Guthe / Dependency Free Parallel Progressive Meshes

with FVIDi is collapsed. Figure 4 shows this numbering of
the vertices. The leaf nodes of the binary tree forest are sim-
ply numbered from left to right. Then the collapsed vertex v
receives the FVID of its left child vt which is the smaller one.
The resulting encoding of the faces is shown on the right side
of the figure for a simple model. If a face is now decoded,
when the split operation is performed, the current vertices
are either those with the same FVID, or the one with the
greatest FVID smaller FVIDi. In the example, we need to
find the active vertex for the FVID 1 when performing split
1. The currently active vertex with the greatest FVID smaller
than 1 is vertex 0 which is the collapse target of vertex 1.

20

0

10 2 3

0

0 2

0

3

2

f1: 2 3 1

split 0

split 2

1

0 3

2

f2: 0 1 3

f1: 2 3 1

v

v
t

v
u

split 1

Figure 4: Computation of the final vertex IDs and encoding
of the generated faces.

In theory this can lead to foldovers as the generated trian-
gles can be flipped if vl or vr change their position. This can
however not happen if the simplification errors of collaps-
ing vl and vr are at least that of collapsing v. Note, since the
edge collapses are generated with increasing error, this is au-
tomatically handled during simplification. The local mono-
tonicity is enforced by tracking the simplification error of the
adjacent vertices during simplification and using the maxi-
mum of all neighbor’s errors as the actual error. Now we only
need to make sure that a vertex is split if any adjacent trian-
gle is visible and the simplification error exceeds the screen
space threshold to prevent visible foldovers. This would be
the case if the model was adapted to a constant error, leading
to the same sequence of operations as generated during sim-
plification. Although we do not explicitly force splitting of vl
and vr, we did not notice any visible foldovers in our exper-
iments as the error is smoothly changing over the mesh any-
ways. In addition, each split operation needs to encode the
refinement criteria for LOD selection, the vertex attributes
of vt and vu, and the references to the splits of vt and vu. Fi-
nally, the operations are compressed using arithmetic coding
to reduce the memory consumption. In contrast to previous
approaches the compression is performed independently for
each operation to retain random access.

3.3. GPU Adaption

The adaption algorithm is subdivided into several consecu-
tive steps to implement the refinements on massively parallel
hardware. The partitioning is required for thread synchroni-
sation while each step can be processed completely in par-
allel. First, each vertex is classified to be split, kept, or col-
lapsed. Then the necessary operations are performed on the
adapted mesh. This mesh is then used as input for the next
frame to exploit temporal coherence.

4. Data Structure

Table 1 gives an overview of the complete split operation
data structure. We use several view-dependent refinement
criteria to determine whether a vertex needs to be split or
can be collapsed. It can be collapsed if it is either outside
of the view frustum or all adjacent triangles are back-facing.
At runtime only the normal of the adapted vertex is avail-
able. We thus encode the maximum angular deviation α

from the normal of the simplified vertex forming a normal
cone [Hop97]. Since each vertex of the adapted mesh can
be adjacent to triangles on different levels-of-detail we need
to consider the normals of all possibly adjacent faces. To
prevent the computation of trigonometric functions at run-
time, sinα is stored. A vertex needs to be split if it is visible
and the simplification error exceeds some pre-defined limit
in screen space. Instead of directly using the quadric error
for the LOD selection we compute the geometric attribute
error [GBBK04] after simplification to improve the visual
quality. The simplification error is comprised of a geometric
error εg and an attribute error εa. While the attribute error
is independent of the view direction d, the geometric error
originates from a displacement in normal direction n.

group element memory (bytes)

connectivity
vu (FVID) 4
number of faces 1
faces (FVID) 12 f

refinement criteria
α (normal cone angle) 4
εg (geometric error) 4
εa (attribute error) 4

attributes
∆vt 4k
∆vu 4k

binary tree forest
children present 1
child pointer 4

Table 1: Elements and size of the uncompressed split oper-
ation, where f is the number of generated faces and k the
number of vertex attributes.

As in most previous approaches, we do not directly store
the attributes of vt and vu, but only the differences ∆vt/u to
the attributes of v. This has the advantage that we can recon-
struct the attributes of v from those of vt and the data stored
in the split operation. For the binary tree forest we first en-
code whether vt and vu are further split. Then pointers to
their operations are stored as address offset to the end of the
current operation. We do not need to store an offset for vt
since that operation starts directly after the current one. We
also do not need to store an offset for the next operation of
vu if only a single child is present.

4.1. Out-of-Core Hierarchy

We additionally build a bounding volume (BV) hierarchy
over the split/collapse operations for out-of-core rendering.
The hierarchy serves two purposes: first, the operations are
grouped such that those which are likely to be performed si-
multaneously or successively are stored together. And sec-
ond, it should be used for occlusion culling in order to

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

E. Derzapf & M. Guthe / Dependency Free Parallel Progressive Meshes

coarsen invisible parts of the model. During hierarchy con-
struction it thus needs to be optimized for both purposes.
Meißner et al. [MBH∗01] proposed a simple heuristic to
construct efficient kd-tree hierarchies of triangle meshes for
occlusion culling using a greedy algorithm. We adapt this ap-
proach to a bounding volume hierarchy of variable size split
operations. Storing operations only is different than the hier-
archy used in Quick VDR, where each node contains a com-
plete progressive meshes. We do not only store operations at
leaf level but also at inner volumes to reconstruct coarse ap-
proximations of the model. When processing a BV, we first
need to determine the operations that are stored in it. Then
the operation subtrees are partitioned into the child nodes.
Finding the directly stored operations is straightforward as
those with the highest simplification error are required first.
After storing the operations in the current node their opera-
tion subtrees are partitioned into the child nodes. This way
a complete operation subtree is stored in a single BV hier-
archy subtree. Due to storing operations not only at the leaf
volumes, the estimated subtree area is slightly modified:

A ≈ Al log2

⌈
sl

smax +1

⌉
+Ar log2

⌈
sr

smax +1

⌉
,

where Al and Ar are the bounding box areas of left and right
child node and sl/r the size of the operations in bytes.

4.2. Operation Encoding

We use arithmetic compression [Sai04] to store the opera-
tions in graphics memory. Due to this optimal entropy cod-
ing, the key to achieve a high compression rate, is to re-
duce the entropy. Therefore, the rest of this section describes
how we encode the data with low entropy. As each operation
needs to be decoded independently, we use common prob-
ability tables but encode each operation in a separate byte
stream. This way we only need the starting address to de-
code an operation. As the compression changes the length
of the data and thus the starting address offsets, we need to
perform a bottom up compression of the operations. With the
sequential ordering of operations, this leads to compressing
them in reverse order. In addition, we can only determine the
symbol probabilities after compression. We therefore start
with probability tables that are constructed with zero offsets
and the re-compress the data with the correct probabilities
afterwards. The overall compression thus works as follows:

1. Compute uncompressed operations with zero address off-
sets.

2. Compute the probability tables.
3. Compress the operations in reverse order, computing the

correct address offsets.
4. Re-compute the probability tables and re-compress.

Most of the data form zero centered normal distributions
that can be compressed quite well. As some contain only ab-
solute values the others are remapped to positive numbers.

We use the following mapping to maintain a normal distri-
bution:

u =

{
v≥ 0 : 2v
v < 0 : 2|v|−1,

where v is a variable from a signed distribution and the u’s
form a positive distribution.

Arithmetic coding independently processes single bits or
bytes to restrict the probability table to a reasonable size.
Unfortunately the progressive mesh data do not fit into sin-
gle bytes but often require 32 or even 48 bits in the out-of-
core case. We therefore use a context based arithmetic com-
pression. A separate probability table is used depending on
the byte significance. If a preceding byte of the currently en-
coded value is non-zero, the probabilities drastically change.
In this case an additional table is used to encode the succes-
sive bytes. We perform a bottom up coding of the operation
tree compressing the operations from end to start. As the rel-
ative symbol frequencies have changed, we also rebuild the
probability table and restart compression. The spatial hierar-
chy is also rebuilt after each compression run as the opera-
tions might exceed the maximum node size. We iteratively
reduce the maximum node size when building the hierarchy
and store the model as soon as all nodes are small enough
after compression.

4.2.1. Successive Operations

The possibilities of split operations for vt and vu are sorted
by descending probability and we store: 0 if none are
present, 1 for both, and 2 and 3 for vt and vu only. As men-
tioned above, we only need to store the address of vu since
the operation of vt directly starts after the one of v. The ad-
dress offset oaddr for vu can be estimated as savg(vu− v−1)
if we know the average operation size savg. Then only the
difference to the estimation is stored. In the out-of-core case
the operation address is split into a BV index in and the local
address depending on the index addrl inside the hierarchy
node due to the partitioning of operations. Using a node size
of up to 216 bytes, the combined offset oooc is stored as:

oooc =

{
in = n : oaddr
in 6= n : 216(in−n)+addrl ,

where oaddr is the offset inside the node and n the current BV
node. In contrast to the in-core case, oooc of vt can be non-
zero and needs to be stored as well. Additionally, the offsets

4(1/3)1(1/0)

5(0/1)0(0/0)

3(1/2)

6(2/0)

8(2/2)7(2/1)

10(2/3)

(in/il) - OOC index

i - in-core index

2(1/1)

9(0/2)
i(in/il) - operation

- hierarchy node

Figure 5: Split/collapse operation hierarchy represented as
a forest of binary trees.

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

E. Derzapf & M. Guthe / Dependency Free Parallel Progressive Meshes

cannot be estimated any more since we do not know how
many subtree operations are contained in the current node.
Figure 5 compares the operation ordering of both cases.

4.2.2. Connectivity Coding

In theory we do not need to store the FVID of vu as the dif-
ference to v is simply one plus the number of split operations
in the subtree of vt . If no split for vt exists, we thus know that
the offset is one and do not need to store it. In practice, not
storing the FVID of vu in other cases would require to tra-
verse the whole subtree. As it is then at least two, we store
the offset minus two to prevent the traversal. The triangle
indices (FVID0..2) are sorted such that the first two are chil-
dren of vt and vu respectively. Then these two are encoded as
differences to the FVID’s of vt and vu. While we could also
encode the topology modifications of vt and vu bit-wise, as
proposed by Kim and Lee [KL01]. This would however not
be optimal as the tree is not balanced. The third vertex can-
not be a child vertex of v. Its FVID is either less than v or
at least the next higher FVID vn of the currently active ver-
tices. In the first case, a negative offset to v is stored and
in the second case, a positive offset to vn. The offset vo3 is
then again mapped to a positive value as described above. If
more than one triangle is generated by the operation we can
exploit an additional degree of freedom. First the triangle
with the smallest third vertex offset vo3 is compressed. The
successive triangles are sorted by increasing vo3 and only
the difference to the previous offset is stored. In addition
to the indices, we also store the number of faces to support
non-manifold meshes and improve the compression rate for
boundary edges.

4.2.3. Refinement Criteria

As no high accuracy is required for back-face culling, sinα is
quantized to eight bits. Due to the shrinking neighborhood,
sinα becomes smaller for the successive splits. We thus en-
code the difference to the parent operation to exploit this
fact. A separate probability table is used as the distribution
is nevertheless not centered at zero but at a model dependent
value. We encode εg and εa together as the screen space error
εs is a combination of these two:

εs = max (εa,εg(d ·n)) ,

where d is the normalized view direction and n the normal.
The geometric error is only relevant if it is greater than the
attribute error and we thus encode the maximum error ε and
the ratio µ of εa to εg. Then we can then simply clamp µ to be
at most one. Similar to the normal cone angle, the probabili-
ties significantly deviate from a normal distribution. Thus we
also encode µ quantized in a single byte with its own proba-
bility table. The maximum error can vary over a huge range.
The upper bound depends on the model size and its lower
bound is the quantization step q. To compactly encode this
range, we exploit the fact that only a rather low accuracy is

required. In our implementation we use a relative accuracy
of 2% which is expressed by the following coding function:

εenc =

⌈
lnε− lnq

ln1.02

⌉
,

where εenc is the encoded simplification error. Similar to
sinα the simplification error is monotonously decreasing
and we also encode the difference to the parent operation.
In contrast to sinα and µ, the difference exhibits a normal
distribution. Note that the refinement criteria are stored as
the first four bytes of the operation since they need to be de-
coded first to evaluate the necessary operations. The ID of
vu and the number of faces are stored directly after the re-
finement criteria as they are also required when checking for
and preparing the required operations.

4.2.4. Attributes

To prepare the attributes for compression, we first quantize
each coordinate. The quantization step is chosen depending
on the progressive mesh to be encoded. We calculate the root
mean square attribute difference σi for each attribute i over
all operations and then use q = ascaleσi as quantization step.
In our implementation we chose ascale =

1
16 which is a rea-

sonable trade off between accuracy and compression rate.
Assuming the vertices were collapsed to their midpoint, we
use second order prediction for ∆vu (i.e. −∆vt) and store the
difference. More sophisticated estimations using subdivision
schemes are not possible as this would again require at least
the adjacent vertices to be present.

Note, that vt and vu of each split operation can be swapped
without altering the encoded progressive mesh. We exploit
this to improve the compression rate. All operations are
checked and if the total size of the encoded model is reduced
when swapping the vertices, the swap is performed. The size
reduction can be due to the different vertex attributes (es-
pecially for half-edge collapses), the FVID of the generated
vertex, and – especially for operations close to the base ver-
tices – due to smaller FVID offsets. To exactly calculate the
compression improvement we would need to compress the
complete progressive mesh twice for each operation, lead-
ing to a total complexity of O(n2). Swapping an operation
however only influences the geometry offsets of the opera-
tion itself and the FVID offsets of all operations on neighbor
vertices. Using an fixed approximate probability table, we
can estimate the first one in O(n) time for all operations.
The neighborhood for the FVID offsets grows by a factor of√

2 with each level of the hierarchy. Thus the total number
of influenced operations throughout the whole hierarchy is:

∑
log2 n
i=0 2i

√
n
2i = O(n). Starting from leaf level, we collect all

operations that generate neighboring triangles and propagate
them up to the root operations. During this process, triangles
that lie completely between the two collapsed vertices are
stored at that operation. After searching the influenced op-
erations, we can estimate the effect of the swap on the com-
pressed size of the FVIDs in total linear time as well.

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

E. Derzapf & M. Guthe / Dependency Free Parallel Progressive Meshes

5. Runtime Algorithm

Besides classifying the vertices before applying the opera-
tions, the adaption is split into first applying all collapse op-
erations. Then the memory for the new vertices and faces is
allocated while the data of collapsed ones is freed. Finally,
the split operations can be performed by updating the ver-
tices and then the current vertex indices. The dynamic data
structures required for rendering are the vertex buffer con-
taining the position and attributes and the index buffer stor-
ing the connectivity of the adapted mesh. Both are stored
as vertex buffer objects (VBOs) and are separated from all
other data. Table 2 gives an overview of all dynamic data
structures.

buffers elements memory (bytes)

active faces
index VBO 24m
FVIDs 24m

active vertices

vertex VBO (×2) 8km
vertex ID (×2) 8m
split & collapse cache (×2) 16m
collapse target (×2) 8m
next split & collapse (×2) 16m a / 24m b

temporary

vertex count 4m
face count 4m
vertex prefix sum 4m
face prefix sum 4m

total in-core / out-of-core (112+ 8k)m / (120+ 8k)m

Table 2: Elements of the dynamic data structure. k and m
are the number attributes and adapted mesh vertices. Next
split and collapse are stored with 32 bits in the in-core (a)
and 48 bits in the out-of-core case (b).

5.1. Vertex State Update

In the first step we determine the necessary operations. If the
vertex v needs to be split according to its refinement criteria,
we set its number of child vertices in the next iteration to
two. Additionally the number of faces that are created by
this operation is decoded. Otherwise the number of vertices
is set to zero if the refinement criteria allow a collapse, or
to one if not. The collapse of a vertex is only possible if its
corresponding and its target vertex vt have not performed
further splits. This can efficiently be checked by keeping the
vertices sorted based on their FVID. In this case the previous
vertex of v needs to be its target vt and the target of the next
vertex must not be v.

Two or three refinement criteria are checked for each
active vertex for in-core and out-of-core rendering respec-
tively. The most simple one is view frustum culling as a
vertex can be collapsed if it lies outside the view frustum
regardless of the simplification error. To prevent foldovers,
we do however not simply collapse all vertices that are out-
side of the view frustum but modify the distance d of these
vertices for the following LOD selection:

d̃ =

(
cLOD

(
max(|x|, |y|, |z|)

w
−1
)
+1
)

d,

where x, y, z and w are the homogeneous coordinates of the
vertex after projective transformation. In our experiments
cLOD = 100 is used for a smooth LOD falloff outside the
view frustum which prevents foldovers and popping artifacts
when rotating or panning. The next test is back-face culling.
The vertex is culled if n ·d > sinα, where d is the normal-
ized view direction, p the vertex position, n the normal, and
α the normal cone angle as discussed in Section 4.2.3. In
addition we use occlusion culling for out-of-core render-
ing based on the visibility of the bounding volumes. The
vertex can be collapsed if its split or collapse is stored in
an occluded bounding volume. We use hardware occlusion
queries [CCG∗01] to determine which bounding volumes
are visible. The queries are performed after rendering the
complete scene and the results are fetched before the next
adaption. This way the visibility is lagging behind by one
frame but this is unproblematic as it is not used for rendering
but for LOD selection only. Regardless of the query results
we always render the complete adapted mesh. The simpli-
fication error is evaluated after culling. Each active vertex
has an eight byte cache storing the split and collapse refine-
ment criteria to reduce decoding time and unaligned global
memory access. The split cache only needs to be updated
if the vertex was modified or created by a split operation in
the previous frame. The complete vertex update is shown in
Algorithm 1.

foreach vertex v in parallel do

update_split_cache(v)
set_vertex_cnt(v, 1)
set_face_cnt(v, 0)
if need_split(v)

decode_number_of_faces(v)
set_vertex_cnt(v, 2)

elif need_collapse(v)
target = get_target(v)
targetnext = get_target(next(v))
if prev(v) == target && v != targetnext

set_vertex_cnt(v, 0)

Algorithm 1: Parallel vertex state update algorithm.

5.2. Parallel Edge Collapses

To perform a collapse, we need to check whether the target
vt of the current vertex vu was not marked for splitting in the
first stage. The collapse operation then simply moves vertex
vt to its old position v and copies the collapse cache of vu to
the split cache of v. Removal of vertex vu and the degenerate
faces are handled in later stages. Algorithm 2 shows the par-
allel processing of the edge collapse operations to prepare
removal of the collapsed vertices and faces.

5.3. Memory Management

Memory must be reserved for the additional vertices and
faces before the split operations can be applied. While the
ordering of faces is irrelevant for the algorithm, the vertices
must be sorted by their FVID as discussed above. If the index

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

E. Derzapf & M. Guthe / Dependency Free Parallel Progressive Meshes

foreach vertex vu in parallel do

vt = get_target(vu)
if !marked(vt , split)

collapse_vertices(vt , vu)
else

set_vertex_cnt(vu , 1)

Algorithm 2: Parallel edge collapse algorithm.

and FVID buffers are large enough, the faces can be directly
appended. To determine the position of the faces in the in-
dex buffer, the parallel prefix sum [SHZO07] of the number
of generated faces is computed. After calculating the prefix
sum, we can determine the total number of faces after all
split operations. If the size of the face buffers is too small
or significantly too large, new buffers are allocated and the
content of the old ones is copied into them. When a reallo-
cation is performed, the buffer size is set to the number of
faces n f plus a user-defined threshold nalloc. If the buffer is
larger than n f +2nalloc it is reduced to n f +nalloc. While the
buffer resizing is applied to the vertices as well, new vertices
cannot be simply appended to the vertex buffer. They need
to be sorted by their ID as discussed above. This means that
they have to be inserted after the corresponding split vertex.
We accomplish this by copying the old vertices into a new
buffer. During this process, the collapsed vertices are also
removed by calculating the parallel prefix sum of the vertex
count to determine the positions in the new buffer. The ver-
tex IDs, caches and next split/collapse buffers need to be pro-
cessed this way as well. While the memory of the old buffers
could be freed after this step, the repeating allocation would
drastically reduce the performance. The reorganisation and
compaction of the vertex buffer are shown in Algorithm 3.

face_sum = prefix_sum(face_cnt)
if need_face_buffer_resize()

resize_face_buffers()
vertex_sum = prefix_sum(vertex_cnt)
if need_vertex_buffer_resize()

resize_vertex_buffers()
foreach vertex v in parallel do

new_pos = vertex_sum[v]
next_pos = vertex_sum[v+1]
if new_pos != next_pos

copy_vertex(v, new_pos)

Algorithm 3: Memory management algorithm.

5.4. Parallel Vertex Splits

The split operations are performed after memory allocation
and reorganisation of the vertex buffer. To improve thread
utilization we first compact the splits [SHZO07] such that
each thread performs an operation. Every operation gener-
ates a new vertex vu and moves v to its new position vt . Ad-
ditionally, the new faces are added to the index and the FVID
buffers. For this we need to determine the current indices for
each of the new faces. Fortunately, the first two vertices of
each new face are known as they are vt and vu. The third ver-
tex needs to be located in the vertex buffer. By construction

it is the vertex with the greatest FVID less or equal to the one
stored in the face. We use Binary Search to find this vertex in
the vertex buffer. Note that while this does not fully utilize
memory bandwidth it keeps the threads within every warp
running in parallel which is also important for performance.
Algorithm 4 shows the parallel vertex split.

compact(splits)
foreach split vertex v in parallel do

vu = v+ 1
split_vertex(v, vu)
append_faces(v)

Algorithm 4: Parallel vertex split algorithm.

5.5. Index Update

The indices of the faces adjacent to split and collapse ver-
tices need to be updated (e.g. fn1 − fn6, fl , and fr in Fig-
ure 1) after performing all operations. This is necessary as
the vertices of adjacent faces can perform their operations in
parallel. The correct vertex can either be the previous one,
the current one, or the next vertex in the sorted array. The
first case occurs when the vertex was collapsed, while the
last one occurs when the vertex was split. The second case
can either happen when no operation was performed or the
operation did not change the connectivity of that face. Algo-
rithm 5 shows the parallel index update.

foreach indices i in parallel do

ID = get_vertex_id(i)
FVID = get_final_id(i)
if ID < FVID

set_vertex_id(i, ID + 1)
elif ID > FVID

set_vertex_id(i, ID - 1)

Algorithm 5: Parallel index update.

5.6. Buffer Compaction

The final step of the adaption is the compaction of the in-
dex buffers to delete degenerate faces. Note that as the in-
dex VBO is used for rendering it needs to be compact
anyways. We use a specialized in-place compaction algo-
rithm [DMG10a] since the ordering does not need to be pre-
served. The main advantage besides a minor speedup is that
we do not need to duplicate these buffers.

5.7. Out-of-Core Memory Management

An additional memory management of the static data struc-
tures is performed for out-of-core rendering. Only the cur-
rently necessary bounding volumes are kept in graphics
memory based on a priority scheduling. All relevant data
is stored in graphics memory and the main memory con-
sumption is minimal. In addition to temporary memory for

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

E. Derzapf & M. Guthe / Dependency Free Parallel Progressive Meshes

model vmax fmax orig. (MB) PM (MB) BV nodes bpv compr. time rendered # faces memory (MB) frame time (ms) MTPS
Dragon 3,609,455 7,218,906 165.2 ic: 43.0 (26.1%) 12.5 9m 1,301,757 (18.0%) 152.3 (92.2%) 6.5 200.3

ooc: 48.2 (29.1%) 843 14.0 14m 1,023,843 (14.2%) 142.2 (86.1%) 5.9 173.5
Statuette 4,999,996 10,000,000 228.8 ic: 58.7 (25.7%) 12.3 12m 1,479,282 (14.8%) 180.9 (79.1%) 7.2 205.4

ooc: 64.9 (28.3%) 1136 13.6 19m 1,338,246 (13.4%) 182.4 (79.7%) 7.3 183.3
Lucy 14,027,872 28,055,742 642.2 ic: 152.9 (23.8%) 11.4 37m 2,804,876 (10.0%) 379.9 (59.1%) 11.6 241.8

ooc: 168.6 (26.3%) 2965 12.6 56m 2,672,566 (9.5%) 397.3 (61.9%) 13.5 198.0
David 28,184,526 56,230,343 1288.6 ic: 303.3 (23.5%) 11.3 1h 10m 2,954,923 (5.2%) 541.8 (42.0%) 12.1 244.2

ooc: 335.2 (26.3%) 5945 12.5 1h 49m 2,859,350 (5.1%) 498.0 (38.6%) 14.3 200.0
St.Matthew 186,810,938 372,422,615 8537.8 ooc: 2038.0 (23.9%) 36034 11.4 11h 54m 3,412,032 (0.9%) 541.7 (6.3%) 15.3 223.0
Atlas 254,837,027 509,674,062 11665.5 ooc: 3039.7 (26.0%) 53159 12.5 16h 27m 4,025,064 (0.8%) 605,7 (5.2%) 17.8 226.1
Scene 492,469,814 983,601,668 22528.1 ooc: 5694.6 (25.3%) 100082 12.1 5,514,913 (0.6%) 795.8 (3.5%) 39.7 138.9

Table 3: Progressive meshes examined in our experiments, compression results and rendering statistics.

loading, only the mapping of bounding volumes to mem-
ory positions, the file offsets required for out-of-core man-
agement, and the bounding boxes are stored in main mem-
ory. For loaded bounding volumes we also store pointers to
their data in device memory. A bounding volume is required
when at least one of the active vertices has a reference to it.
A split operation can create vertices that reference volumes
not available in graphics memory and the data needs to be
loaded from disk. Each BV contains operations with differ-
ent simplification errors. Based on the maximum error of the
operations stored in a volume, we can derive a distance dn
beyond which no split is ever necessary. Then we calculate a
priority p = dn

dv
, where dv is the distance between the viewer

and the bounding box. The data of the bounding volume is
only required if its priority is at least one. The bounding vol-
umes with higher priority are loaded first if the transfer from
disk to graphics memory is not fast enough. This has the ad-
vantage that the model is uniformly adapted and no LOD
starvation can occur. To limit the memory consumption, a
maximum number of nodes nmax kept in graphics memory
is specified by the user. When rendering several progressive
meshes, the node memory is shared among all models. When
the user moves through the scene, the visibility and the re-
quired LOD of the object change. This results in a contin-
uous change of the bounding volumes currently required in
graphics memory. As discussed above, loading data results
in a visible delay of the adaption. We solve this problem by
not only loading the currently required nodes, but also the
nodes with lower priority, as long as enough space is avail-
able. Before uploading the currently required bounding vol-
umes to graphics memory we first remove unnecessary ones
until enough space is available. Since accessing the hard disk
causes high delays, loading operations into main memory is
preformed in a second thread. As soon as the data is avail-
able in main memory, the rendering thread can copy it into
graphics memory after scheduling the occlusion queries.

6. Results

Our test system consists of a 3.333 GHz Intel Core i7-980X
CPU with 6 GB DDR3-1333 main memory, 16 lanes PCIe
2.0 slot, and an NVIDIA GTX580 (841/4204MHz) graph-
ics card. OpenGL is used for rendering and CUDA for the

adaption algorithm. The out-of-core data is stored on a SA-
TAII hard disk (8.5ms/64MB/7200rpm) with approximately
100 MB/s read speed. The bounding volume data size is set
to 64 kB, as host to device copy of blocks with up to this size
is asynchronous. We use a resolution of 1920×1080 with a
screen space error of 0.5 pixel. We used at most nmax = 4096
(256 MB cache) for all out-of-core models. Table 3 gives
an overview of the progressive meshes we tested in our ex-
periments. All models use position and normal as vertex at-
tributes (k = 6). The original meshes contain vmax vertices
and fmax faces. The number of base mesh faces is zero and
that of base mesh vertices v0 is very low. The number of
operations is vmax−v0. The resulting file sizes and compres-
sion rates for the in-core (ic) and out-of-core (ooc) case are
listed in Table 3 together with the number of BV nodes and
bytes per vertex (bpv). Compared to in-core, the out-of-core
static data requires approximately 1 additional byte for each
operation. On average 1.2 bpv are consumed by the refine-
ment information and 1.0/2.0 bpv by the tree structure in
the in-core and out-of-core case. The connectivity and ge-
ometry need 2.4 and 5.8 bpv and 0.6 bpv are wasted due to
the per operation compression. Additionally, 35 bytes main
memory (bounding box, visibility, offset, and file position)
and 5 bytes graphics memory (visibility and offset) are re-
quired per BV node. The compression performance is ap-
proximately 7 kop/s (in-core) and 4.3 kop/s (out-of-core).
In the first case, approximately half of the time is required
for the optimization and the other half for the two arithmetic
coding runs. In the second, three additional arithmethic cod-
ing runs were required until convergence for all models.

Table 3 also lists the number of rendered faces, the total
rendering time, and the memory consumption for the views
shown in Figure 6, and the scene in the accompanying video,
where the numbers are taken from the most complex frame.
The ratio compared to an indexed face set (IFS) of the origi-
nal model is shown in parenthesis. During rendering, the dy-
namic data structures consume additional memory. The total
amount of graphics memory nevertheless stays below that of
the original models. The out-of-core algorithm facilitates oc-
clusion culling and out-of-core memory management, there-
fore the frame time is approximately 10% higher compared
to in-core rendering although the number of faces is approx-

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

E. Derzapf & M. Guthe / Dependency Free Parallel Progressive Meshes

Figure 6: Renderings of view-dependently refined meshes.
The external views show the view frustum (yellow), LOD
(red: low; green: high), and the nodes used for occlusion
culling (red: occluded; green: visible).

imately 10% lower. The culling overhead is low because
the number of bounding volumes is small compared to the
number of triangles, we only use asynchronous queries, and
only require a single switch between rendering and occlu-
sion queries per frame. We can process up to 244/226 million
triangles per second (MTPS) for static views in the in-core
and out-of-core case respectively. The frame time linearly in-
creases with the number of faces. This face count converges
to a constant value with increasing model size which is a
typical behavior of all LOD algorithms. Therefore, the frame
time converges to a constant value as well. The same holds
for the memory consumption of the out-of-core algorithm.
As our GPU can render an indexed face set with 600 MTPS,
the performance of our method is faster than rendering the
original model as soon as 60% of the faces are removed. Fig-
ure 6 also shows the coarsening of culled faces.

0

100

200

300

400

500

600

700

800

0

5

10

15

20

25

30

35

40

45

50

55

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

Adaption time

Total time

Memory [MB]

MTPS

MB/MTPSAdaption/Total time

Figure 7: Timings, memory consumption and triangle rate
for the scene using a pre-recorded camera path.

The adaption and rendering time together with the mem-
ory consumption and number of faces for a pre-recorded
movement through the scene are shown in Figure 7. The con-
sumed memory is always below 796 MB, the frame rate is
constantly above 30 frames per second (fps) with an aver-
age of 50 fps and 140 MTPS. Our approach quickly reacts
to changes of the view with fast adaption of the scene com-
plexity. Due to the high adaption performance no popping
artifacts are visible in the video despite fast movements and
the screen space error of 0.5 pixel is always achieved.

6.1. Discussion

In Table 4 we compare our algorithm with three different
types of approaches. We can render 180/140 MTPS (in-
core/out-of-core) for dynamic views and up to 23/13 MTPS
can be generated. Note that the number of generated tri-
angles of our out-of-core algorithm is limited by the HDD
speed. Due to the slightly reduced number of triangles for
identical views, the relative rendering performance is 155
MTPS with up to 14.44 MTPS generated. The progressive
mesh requires 11-14 bytes per vertex (bpv).

Algorithm relative #triangles rendered MTPS generated MTPS bpv
Our ic 1 180 23 11-13
Our ooc 0.9 140 (155) 13 (14.44) 11-14
Compression approaches
[CKLL09]* ooc VFC only 600 (n.a.) 0.07 (n.a.) 1-3
[CH09]* ic VFC only 600 (n.a.) 0.4 (n.a.) 2-4
[DJCM09]* ooc >10 600 (<60) 0.04 (<0.004) 1-3
[JGA09]* ooc >10 600 (<60) 0.3 (<0.03) 2-4
HLOD approaches
[GBK03] ooc ∼5.5 400 (73) 4.6 (0.84) 26
[CGG∗04] ooc ∼6.5 500 (76) 4.6 (0.71) 33
[GM05] ooc >10 190 (<19) 3.4 (<0.34) 61
Progressive Meshes
[YSGM04] ooc ∼2.5 90 (36) 0.015 (0.006) 79
[HSH09] ic ∼1.05 30 (28) 0.8 (0.76) 69
[DMG10a] ic ∼1.2 80 (66) 4.4 (3.66) 22
[DMG10b] ooc ∼1.1 60 (55) 4.0 (3.63) 24

Table 4: Comparison of triangle rate and memory consump-
tion with previous approaches. The relative performance is
shown in parenthesis. Results marked with * are results of
the original authors scaled to the performance of our sys-
tem, while all other were measured.

While compression approaches of course achieve better
compression ratios, they have significant shortcomings re-
garding rendering. First of all, most of them do not support
extracting a level-of-detail and thus only support view frus-
tum culling (VFC) [CKLL09,CH09]. Others only allow sim-
ple level-of-detail schemes based on regular vertex cluster-
ing [DJCM09, JGA09]. This is however known to require
at least an order of magnitude more primitives to achieve
the same quality. Note that high compression ratios are also
achieved by not encoding vertex normals which also reduces
the visual quality as the normals computed from a simpli-
fied mesh can drastically differ from correctly simplified
ones. Another problem is the complex connectivity coding

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

E. Derzapf & M. Guthe / Dependency Free Parallel Progressive Meshes

that prevents parallel decompression. The fastest compres-
sion approach only achieves decoding of up to 0.3 MTPS.
Considering the increased number of triangles compared to
our approach, the relative adaption performance is less that
30,000 triangles per second so it at least 500 times slower.
Once generated, the resulting mesh can be rendered at full
performance. Again we need to consider the tenfold increase
in model complexity which translates to a relative perfor-
mance of less than 60 MTPS or less than 40% compared to
our algorithm. So our approach can render the same view
more than twice as fast and can adapt the LOD more than
two orders of magnitude faster.

Hierarchical level-of-detail (HLOD) algorithms also gen-
erally achieve high rendering performance unless special
shaders are used [GBK03, GM05]. Compared to view-
dependent progressive meshes, the number of primitives is
however drastically increased. This is due to three reasons:
First, the LOD is only evaluated per node of the hierar-
chy. This already doubles the number of primitives con-
sidering that there is usually a resolution factor of two be-
tween successive level. The second reason is that the LOD
is only distance instead of fully view-dependent which pre-
vents coarsening of back-facing and non-silhouette trian-
gles. This also approximately doubles the number of primi-
tives. Finally, special care must be taken at the node bound-
aries which also slightly increases the primitive count. In to-
tal, the number of primitives is 5 to 7 times higher for the
same view [GBK03, CGG∗04]. This factor can exceed 10
if vertex clustering is used [GM05]. The number of gener-
ated triangles either depends on the hard disk speed or the
mesh decompression. On our system, between 3.4 and 4.6
MTPS can be generated. Due to the higher primitive count,
these are reduced to a relative performance of at most 1.47
MTPS [GBK03] (10% of our adaption performance). The
relative rendering performance is also reduced to at most 76
MTPS [CGG∗04] or 49% of our approach. In summary, our
approach renders approximately twice as fast and can react
ten times quicker to view changes.

View-dependent adaption algorithms can better compete
with our approach regarding the number of primitives.
The actual factor depends on whether view- or distance-
dependent adaption is used. It also depends on the degree of
neighborhood dependencies and lies between 1.05 [HSH09]
and 1.2 [DMG10a] with view-dependent adaption and
2.5 [YSGM04] otherwise. The rendering performance is
significantly lower than for HLODs due to the continuous
geometry changes and interleaving adaption with render-
ing. The relative rendering performance lies between 28
MTPS [HSH09] and 66 MTPS [DMG10a] which is 16-37%
of our approach. The adaption performance of the GPU al-
gorithms (up to 4.4 MTPS) is significantly higher than CPU
algorithms [YSGM04] with only 15,000 triangles per sec-
ond. The relative adaption rate is at most 3.66 MTPS which
is 25% of our method. Compared to these algorithms, our

method can render the same views three times faster and
adapt the LOD four times faster.

6.2. Analysis

Finally, we analyze the runtime of each step of the adaption
and rendering algorithm in Figure 8. As the rendering per-
formance is identical to rendering a static model with the
same number of triangles, our method needs approximately
four times as long as rendering a static mesh. Considering
that we already cut down the vertices significantly due to the
simplification of culled faces, our method will almost always
be faster than rendering the original model. The most expen-
sive steps of our algorithm are the state update and reorgan-
isation. The state update is expensive because each active
vertex needs to perform this step and the reorganisation as
we need to maintain a sorted vertex buffer. The split/collapse
cache reduced the state update time by 40%. Map and unmap
are required for the mapping and unmapping of the index
and vertex buffer for access from CUDA and can hardly be
reduced or prevented.

Figure 8: Relative time of the adaption steps compared to
rendering.

7. Conclusion and Limitations

We have proposed an in-core and out-of-core dependence
free progressive mesh representation that is specifically de-
signed for parallel view-dependent adaption. It is based on
an implicit coding of topology modification inside the faces.
In contrast to previous approaches no splits need to be post-
poned as they are waiting for others to be applied before
them, which is otherwise very problematic for fast move-
ments. Compared to progressive meshes and HLOD ap-
proaches we reduce the rendering time, popping artefacts
and the memory consumption significantly. This allows ren-
dering of large models with fast movement nearly without
popping artefacts. Compared to compression approaches we
require more disk space, but can keep compressed data in
graphics memory. Further drawbacks of compression ap-
proaches are coarse grained random access and slow decom-
pression, resulting in severe popping artefacts. Moreover, the
refinement criteria and normals are not encoded. This im-
proves the compression rate, but reduces the quality and sig-
nificantly increases the number of faces.

The main limitation of our algorithm is that the reorgan-
isation of the vertices is rather expensive. An acceleration

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

E. Derzapf & M. Guthe / Dependency Free Parallel Progressive Meshes

or prevention of this step would significantly increase the
performance. Of course, the efficiency of the method soley
depends on the underlying mesh simplification. If a model
cannot be reduced using geometric simplification, other ap-
proaches (e.g. Fax Voxels [GM05]) are better suited.

References

[AAR05] ALREGIB G., ALTUNBASAK Y., ROSSIGNAC J.:
Error-resilient transmission of 3d models. ACM Trans. Graph.
24, 2 (2005), 182–208. 2

[BGB∗05] BORGEAT L., GODIN G., BLAIS F., MASSICOTTE
P., LAHANIER C.: Gold: interactive display of huge colored and
textured models. ACM Trans. Graph. 24, 3 (2005), 869–877. 2

[CCG∗01] CUNNIFF R., CRAIGHEAD M., GINSBURG D.,
LEFEBVRE K., LICEA-KANE B., TRIANTOS N.: ARB occlu-
sion query. Tech. rep., NVIDIA and ATI, 2001. 7

[CGG∗04] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Adaptive tetrapuzzles: ef-
ficient out-of-core construction and visualization of gigantic mul-
tiresolution polygonal models. ACM Trans. Graph. 23, 3 (2004),
796–803. 2, 10, 11

[CH09] COURBET C., HUDELOT C.: Random accessible hi-
erarchical mesh compression for interactive visualization. In
Proceedings of the Symposium on Geometry Processing (2009),
pp. 1311–1318. 2, 10

[CKL∗04] CHOE S., KIM J., LEE H., LEE S., SEIDEL H. P.:
Mesh compression with random accessibility. In Israel-Korea
Bi-National Conf (2004), pp. 81–86. 2

[CKLL09] CHOE S., KIM J., LEE H., LEE S.: Random acces-
sible mesh compression using mesh chartification. IEEE Trans-
actions on Visualization and Computer Graphics 15, 1 (2009),
160–173. 2, 10

[DGGP05] DIAZ-GUTIERREZ P., GOPI M., PAJAROLA R.: Hier-
archyless simplification, stripification and compression of trian-
gulated two-manifolds. Computer Graphics Forum 24, 3 (2005),
457–467. 2

[DJCM09] DU Z., JAROMERSKY P., CHIANG Y.-J., MEMON
N.: Out-of-core progressive lossless compression and selective
decompression of large triangle meshes. In Proceedings of the
2009 Data Compression Conference (2009), pp. 420–429. 2, 10

[DMG10a] DERZAPF E., MENZEL N., GUTHE M.: Parallel
view-dependent refinement of compact progressive meshes. In
Eurographics Symposium on Parallel Graphics and Visualization
(2010), pp. 53–62. 2, 3, 8, 10, 11

[DMG10b] DERZAPF E., MENZEL N., GUTHE M.: Parallel
view-dependent out-of-core progressive meshes. In Vision, Mod-
eling, and Visualization (2010), pp. 53–62. 2, 3, 10

[EMB01] ERIKSON C., MANOCHA D., BAXTER III W. V.:
Hlods for faster display of large static and dynamic environments.
In I3D ’01: Proceedings of the 2001 symposium on Interactive
3D graphics (2001), pp. 111–120. 2

[GBBK04] GUTHE M., BORODIN P., BALÁZS Á., KLEIN R.:
Real-time appearance preserving out-of-core rendering with
shadows. In Rendering Techniques 2004 (Proceedings of Euro-
graphics Symposium on Rendering) (2004), pp. 69–79. 4

[GBK03] GUTHE M., BORODIN P., KLEIN R.: Efficient view-
dependent out-of-core visualization. In Proceedings of the 4th
International Conference on Virtual Reality and its Applications
in Industry (VRAI ’2003) (2003), pp. 428–438. 2, 10, 11

[GM05] GOBBETTI E., MARTON F.: Far voxels: a multireso-
lution framework for interactive rendering of huge complex 3d
models on commodity graphics platforms. ACM Trans. Graph.
24, 3 (2005), 878–885. 2, 10, 11, 12

[Hop96] HOPPE H.: Progressive meshes. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques (1996), pp. 99–108. 2, 3

[Hop97] HOPPE H.: View-dependent refinement of progressive
meshes. In SIGGRAPH ’97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques (1997),
pp. 189–198. 2, 3, 4

[Hop98] HOPPE H.: Efficient implementation of progressive
meshes. Computers & Graphics 22, 1 (1998), 27–36. 2

[HSH09] HU L., SANDER P. V., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In I3D ’09: Pro-
ceedings of the 2009 symposium on Interactive 3D graphics and
games (2009), pp. 169–176. 2, 3, 10, 11

[JGA09] JAMIN C., GANDOIN P.-M., AKKOUCHE S.: Techni-
cal section: Chumi viewer: Compressive huge mesh interactive
viewer. Comput. Graph. 33, 4 (2009), 542–553. 2, 10

[KCL06] KIM J., CHOE S., LEE S.: Multiresolution random ac-
cessible mesh compression. Computer Graphics Forum 25, 3
(2006), 323–332. 2

[KL01] KIM J., LEE S.: Truly selective refinement of progressive
meshes. In Graphics Interface 2001 (2001), pp. 101–110. 2, 6

[MBH∗01] MEISSNER M., BARTZ D., HÜTTNER T., MÜLLER
G., EINIGHAMMER J.: Generation of Decomposition Hierar-
chies for Efficient Occlusion Culling of Large Polygonal Models.
In Vision, Modeling, and Visualization (2001), pp. 225–232. 5

[Paj01] PAJAROLA R.: Fastmesh: Efficient view-dependent mesh-
ing. In 9th Pacific Conference on Computer Graphics and Appli-
cations (2001), pp. 20–30. 2

[PD04] PAJAROLA R., DECORO C.: Efficient implementation of
real-time view-dependent multiresolution meshing. IEEE Trans-
actions on Visualization and Computer Graphics 10, 3 (2004),
353–368. 2

[PR00] PAJAROLA R., ROSSIGNAC J.: Compressed progres-
sive meshes. IEEE Transactions on Visualization and Computer
Graphics 6, 1 (2000), 79–93. 2

[Sai04] SAID A.: Introduction to Arithmetic Coding Theory and
Practice. Tech. Rep. HPL-2004-76, Hewlett-Packard Laborato-
ries, 2004. 5

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS
J. D.: Scan primitives for gpu computing. In Graphics Hard-
ware 2007 (2007), pp. 97–106. 8

[SM06] SANDER P. V., MITCHELL J. L.: Progressive buffers:
view-dependent geometry and texture lod rendering. In ACM
SIGGRAPH 2006 Courses (2006), pp. 1–18. 2

[TR99] TAUBIN G., ROSSIGNAC J.: 3d geometry compression.
In SIGGRAPH ’99: Course Notes. ACM, Los Angeles, Aug.
1999. Course 22. 2

[XV96] XIA J. C., VARSHNEY A.: Dynamic view-dependent
simplification for polygonal models. In VIS ’96: Proceedings
of the 7th conference on Visualization ’96 (1996), p. 327 ff. 2, 3

[YL07] YOON S.-E., LINDSTROM P.: Random-accessible com-
pressed triangle meshes. IEEE Transactions on Visualization and
Computer Graphics 13, 6 (2007), 1536–1543. 2

[YSGM04] YOON S.-E., SALOMON B., GAYLE R., MANOCHA
D.: Quick-vdr: Interactive view-dependent rendering of massive
models. In VIS ’04: Proceedings of the conference on Visualiza-
tion ’04 (2004), pp. 131–138. 2, 10, 11

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

